
1. Introduction
Wildfires are important emission sources that contribute a vast amount of aerosols and trace gases to the atmos-
phere, leading to hazardous air quality. Exposure to wildfire pollution has been associated with adverse respira-
tory health issues and premature mortality, which in turn impose substantial economic burdens on society (Fann 
et al., 2018; Ford et al., 2018; Neumann et al., 2021). Smoke from massive wildfires can generate hazy conditions 
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Plain Language Summary Wildfires are a major source of air pollution emitting large quantities 
of particles into the air that adversely affect human health. Predicting wildfire air pollution, however, is 
challenging. Ensemble forecasting has been proposed to improve the model predictability. We developed a 
new multi-model ensemble forecast system of wildfire air pollution over North America, leveraging regional 
and global atmospheric models by federal agencies and academia. How well the ensemble forecast can predict 
wildfire pollution was evaluated with observations from satellites and ground monitors. We found that the 
ensemble mean can significantly reduce the forecast biases and produce more reliable forecasts during extreme 
wildfire fire events. The ensemble probability forecast of exceedance of the health-based National Ambient 
Air Quality Standards for fine particles (PM2.5) can be further applied to early warnings of severe air pollution 
episodes during large wildfire events. These findings highlight the potential of the ensemble approach to 
improve the predictability of air pollution during large wildfires.
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near the ground, which poses a risk to transportation safety by degrading visibility (Ford et al., 2018; Spracklen 
et al., 2009). Over the past several decades, the frequency and intensity of both small and large wildfire events 
in the United States (U.S.) have been rapidly increasing in wildfire-prone areas in the western U.S., such as the 
Southwest, the Rocky Mountains, the northern Great Plains, and the Pacific Coast (Liu et al., 2013), as a result 
of climate change from anthropogenic activities causing rising temperatures (Liu et al., 2013; Pierce et al., 2013; 
Schoennagel et al., 2017). In addition, a sharp increase in the number of small wildfires in the western U.S. is 
mainly due to human activities, such as changing land cover by expanding cities into wildlands and increas-
ing human ignitions from campfires, powerlines, and vehicles (Hessburg et al., 2019; S. Li & Banerjee, 2021; 
McClure & Jaffe, 2018; Ryan et al., 2013; Salguero et al., 2020; Stevens-Rumann et al., 2018). The National 
Interagency Fire Center (NIFC) reported that in 2020 there were 58,950 fires across the U.S., with more than 10 
million acres burned (NICC, 2020), and most of the fires took place in the western U.S. In particular, Northern 
California was significantly impacted and experienced the largest recorded wildfires during the summer of 2020 
(California Department of Forestry and Fire Protection [CAL FIRE], 2020).

Many operational forecasting systems have been developed to predict the dispersion and transformation of 
trace gases and aerosols, with the primary goal of mitigating the health effects of poor air quality (Campbell 
et al., 2022; Lee et al., 2017; L. Pan et al., 2014; Tang et al., 2015). However, the accuracy of deterministic 
forecasts from a single model is subject to uncertainties in emission and meteorological input data, as well as the 
physical and chemical processes of the dispersion or chemical transport models (Delle Monache & Stull, 2003; 
Kumar et al., 2020; Y. Li et al., 2020). One of the effective ways to improve forecasting performance is the ensem-
ble approach, which can provide probabilistic forecasts by calculating the mean from either multiple models 
or varying inputs in a single model (Delle Monache, Deng, et al., 2006; Delle Monache, Nipen, et al., 2006; 
Delle Monache et al., 2008, 2020; Delle Monache & Stull, 2003; Y. Li et al., 2020; Petersen et al., 2019; Solazzo 
et al., 2012; Xian et al., 2019). The major advantage of the ensemble forecast over a single model forecast is that 
it can reduce the biases in the forecasts of ensemble members by averaging them out, whereas the uncertainties 
in ensemble forecasts can also be determined from the spreads of ensemble members.

This work presents the development of a multi-model ensemble (MME) wildfire forecasting system and its 
application to air quality prediction during the 2020 Gigafire in the Western U.S. The motivation for develop-
ing aerosol MME consensus is based on numerical weather prediction studies that have shown the usefulness 
of ensemble-mean-based predictions in understanding systematic errors arising from models' imperfect nature 
and the sensitivity of models to initial conditions. For example, multi-model consensuses are found on average 
to produce more accurate forecasts of cyclone track and intensity than the individual model members (e.g., 
Goerss et al., 2004; Sampson et al., 2008). In previous studies, a regional single-model ensemble was created to 
predict surface PM2.5 during the 2018 California Camp Fire event using the NOAA HYSPLIT dispersion model at 
0.1-degree resolution (Y. Li et al., 2020), and the International Cooperative for Aerosol Prediction (ICAP) MME 
has been established to provide AOD forecasts globally (Xian et al., 2019).

The new MME forecast system is based on seven real-time operational forecast systems including three regional 
models, three global models, and one global ensemble. The regional systems include: (a) the George Mason 
University-Community Multiscale Air Quality (GMU-CMAQ) model (Y. Li et al., 2021), (b) the National Oceanic 
and Atmospheric Administration-U.S. Environmental Protection Agency (NOAA-EPA) Atmosphere-Chemistry 
Coupler-Community Multiscale Air Quality model (NACC-CMAQ) (Campbell et al., 2022), and (c) the NOAA 
Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model (Rolph et al., 2009). The three global 
models are: (a) Global Ensemble Forecast System Aerosols (GEFS-Aerosols) (Hamill, Whitaker, Fiorino, & 
Benjamin, 2011), (b) NASA Goddard Earth Observing System (GEOS, version 5) (Buchard et al., 2017; Randles 
et al., 2017), and (c) Navy Aerosol Analysis and Prediction System (NAAPS) (Lynch et al., 2016). Finally, the 
International Cooperative for Aerosol Prediction Multi-Model aerosol forecasting Ensemble (ICAP-MME) is a 
global ensemble mean produced from nine comprehensive global speciated aerosol and/or dust models (Xian 
et al., 2019). The ICAP-MME includes predictions from some global models not listed above but not from any 
regional models. The goal of this study is to improve real-time wildfire air quality forecasts with ensemble fore-
casts with available operational and research real-time forecasts that are already implemented at various agencies.

The goal of this study is to improve real-time wildfire air quality forecasts with ensemble forecasts with avail-
able operational and research real-time forecasts that are already implemented at various agencies. This study 
advances wildfire air quality forecasting over the North America region in several ways. A new MME forecast 



Journal of Geophysical Research: Atmospheres

MAKKAROON ET AL.

10.1029/2022JD037298

3 of 24

system has been developed using both global and regional forecasting models operated by U.S. federal agencies 
and university research centers. The new system was applied to predict AOD and surface fine particulate matter 
(PM2.5) during the unprecedented 2020 Western U.S. Gigafire to test its forecasting performance for extremely 
large wildfire events. The capability to predict Gigafire will better prepare society for future events in a warm-
ing climate. Furthermore, we developed a probability forecast of PM2.5 exceedance based on the results of the 
ensemble members. As air quality forecasts are often used to issue early warnings to the public, it is crucial for 
the ensemble to produce a reliable forecast of PM2.5 exceedances (binary prediction) of health-based National 
Ambient Air Quality Standards (NAAQS) (U.S. EPA, 2020b) during wildfire events. The MME members are 
introduced in Section 2, and the evaluation of the ensemble forecasts and results for the PM2.5 exceedance proba-
bility forecast are discussed in Section 3. We conclude in Section 4.

2. Materials and Methods
2.1. The 2020 Gigafire in the Western United States

In 2020, the western U.S. experienced multiple complex wildfires, leading to a “Gigafire” that burned over 
10.2 million acres (NIFC, 2020) across California, Oregon, and Washington. A significant proportion of burned 
areas were a consequence of California's largest complex fire ever, known as the “August Complex Fire” during 
August–September 2020, resulting from lightning strikes (CAL FIRE, 2020) driven by a heatwave, severe drought 
(Guirguis et al., 2018; Hulley et al., 2020; Pathak et al., 2018), and daytime southerly winds (Varga et al., 2022). 
Smoke from the wildfires spread across the western U.S. leading to hazardous air quality predominantly in 
California, Oregon, Washington, Idaho, and Nevada. Figure  1a displays high observed PM2.5 concentrations 
(>250 μg/m 3; maroon red) from AirNow sites, mainly in the western U.S., on 12 September 2020, when the fires 
were very intense. Also, high daily PM2.5 concentrations above the daily NAAQS for PM2.5 (>35 μg/m 3) were 
recorded at many AirNow monitoring sites across the U.S. between the middle of August–September, primarily 
over California, Oregon, and Washington (Y. Li et al., 2021) as shown in Figure 1b. Consequently, our study will 
focus on AOD and PM2.5 simulations during the Gigafire events from August to September 2020.

2.2. Description of Ensemble Members

According to previous studies, the challenge of the wildfire air quality forecast stems in part from the uncertain-
ties in fire emission and the estimation of the plume height (Y. Li et al., 2020, 2023). The forecast models here 
used to create the ensemble cover a various range of emission data sets, as well as different plume rise schemes. 
In this section, each of the seven participating numerical atmospheric models included in the ensemble will be 
described. Model configurations are shown in Table S1 in Supporting Information S1.

2.2.1. GMU-CMAQ

GMU-CMAQ is a research forecasting system run by the air quality group of George Mason University (GMU) 
to provide daily air quality forecasts across the U.S. for the general public (Y. Li et  al.,  2021). The model 
uses meteorological fields derived from the Weather Research and Forecasting model version 4.2 (WRFv4.2) 
(Skamarock et al., 2019) with the meteorological initial and boundary from the National Centers for Environ-
mental Prediction (NCEP) operational Global Forecast System (GFS) to drive the offline CMAQ model version 
5.3.1 (CMAQv5.3.1) (U.S. EPA, 2020a), and uses biomass burning (BB) emission data from the Global BB 
Emissions Product (GBBEPx; X. Zhang et al., 2012, 2014, 2019) calculated using averaged fire emissions from 
Terra Moderate Resolution Imaging Spectroradiometer (MODIS) fire radiative power (FRP), Aqua MODIS FRP, 
VIIRS-SNPP FRP and Joint Polar Satellite System (JPSS) 1 VIIRS FRP. The anthropogenic emission data is 
taken from the U.S. EPA 2016 National Emissions Inventory Collaborative version 1 (2016v1) Emission Mode-
ling Platform, which is generated by the Sparse Matrix Operator Kennel Emissions model version 4.7 (Houyoux 
et al., 2000) using the base year of the emission inventory taken from the 2016v1 Emission Modeling Platform 
(Eyth et al., 2020). The wildfire smoke plumes are calculated using the Sofiev et al. (2012) plume rise algorithm. 
GMU-CMAQ provides hourly experimental AOD and PM2.5 concentration forecasts on a horizontal resolution of 
12 × 12 km over the CONUS with each day's forecast initialized at 18:00 UTC on the previous day.

2.2.2. NACC-CMAQ

The NACC-CMAQ is a model currently being used in NOAA's operational National Air Quality Forecasting 
Capability. It used a meteorological preprocessor adapted from the EPA's Meteorology Interface Processor version 
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5 (e.g., NACC version 1.3.2; https://zenodo.org/record/5507489#.YmvzsejMKUk, last access 29 April 2022) that 
ingests the outputs from NOAA's latest operational Finite Volume Cubed-Sphere Global Forecast System version 
16 to prepare the meteorology files that are used within the CMAQ Modeling System (Campbell et al., 2022). 
Emission input data sets are very similar to GMU-CMAQ and include GBBEPx for BB emissions, NEI 2016v1 
for anthropogenic emissions, and Biogenic Emission Inventory System version 3.6.1 (BEISv3.6.1; Vukovich & 
Pierce, 2002; Schwede et al., 2005) with the Biogenic Emission Landuse Data set version 5 for biogenic volatile 
organic carbon (BVOC) emissions. The wildfire smoke plumes are computed using the Briggs (1969) plume rise 
algorithm. NACC-CMAQ uses meteorology and emission inputs together with lateral boundary conditions from 
NOAA's operational GEFS-Aerosols model to account for long-range transport of air pollution for dust and smoke 
to provide hourly AOD and PM2.5 forecasts at a horizontal resolution of 12 × 12 km (same as GMU-CMAQ) with 
each day's forecast initialized at 12:00 UTC of the previous day over CONUS.

Figure 1. (a) VIIRS-SNPP true color imagery overlaid by daily mean PM2.5 observations measured by AirNow sites (circles) on 12 September 2020, from NOAA 
AerosolWatch. (b) The time series plot of daily maximum PM2.5 concentrations measured by all AirNow sites across the Contiguous United States during the Gigafire 
events from August to September 2020.

https://zenodo.org/record/5507489#.YmvzsejMKUk
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2.2.3. HYSPLIT

HYSPLIT is a widely used atmospheric transport and dispersion model developed at the NOAA Air Resources 
Laboratory (ARL) (Stein et al., 2015). The model uses a plume-following coordinate system and is typically 
used to determine the atmospheric transport, dispersion, deposition, and chemical transformation of pollutants 
over regional and global domains. Since 2007, it has been employed in NOAA's Smoke Forecasting System 
using fire locations from satellite data and BB data based on vegetation cover from the bottom-up, fuel-based 
Blue Sky modeling system developed by the U.S. Forest Service (Rolph et al., 2009; Stein et al., 2009). The 
HYSPLIT-based Smoke Forecasting System configuration used in this study combines meteorology inputs from 
the NCEP North American Mesoscale 12-km model, fire locations from the NOAA NESDIS Hazard Mapping 
System (HMS), and emissions from fire locations from the U.S. Forest Service (USFS) BlueSky framework 
(Larkin et al., 2009). The wildfire smoke plumes are computed using the Briggs (1969) plume rise scheme to 
simulate hourly AOD and PM2.5 concentration forecasts at a horizontal resolution of 0.15° × 0.15° with each day's 
forecast initialized at 00:00 UTC on the previous day over CONUS.

2.2.4. GEFS-Aerosols

NOAA's GEFS-Aerosols is a global atmospheric composition model established at the NCEP in collaboration with the 
NOAA Global Systems Laboratory, NOAA Chemical Sciences Laboratory, and NOAA/ARL. The GEFS-Aerosols 
version 1 model used here provides aerosol and atmospheric composition forecasts using FV3-based GFSv15 mete-
orology coupled to NASA GOCART aerosol model component using the National Unified Operational Prediction 
Capability Layer (Theurich et al., 2016), which is the current and future foundation of NOAA's Unified Forecast 
System modeling framework (Hamill, Whitaker, Fiorino, & Benjamin, 2011; Hamill, Whitaker, Kleist, et al., 2011; 
L. Zhang et al., 2022; Zhou et al., 2022). The operational GEFS-Aerosols model currently uses BB emission data 
from GBBEPx and global anthropogenic emission data from the Community Emission Data System in 2014 for 
gaseous emissions and the Hemisphere Transport of Air Pollution (HTAP) version 2 for primary aerosol emis-
sions. Wildfire smoke plumes are calculated using a one-dimension (1-D) time-dependent cloud module from 
High-Resolution Rapid Refresh (HRRR)-Smoke model (Freitas et al., 2007). This study employed GEFS-Aerosols 
global AOD and PM2.5 forecasts at a horizontal resolution of 0.25° × 0.25° and initialized each day at 00:00 UTC.

2.2.5. GEOS

The Goddard Earth Observing System (GEOS) is a modular modeling system that can be configured to conduct 
basic research and to support a range of applications related to Earth Science, including short-range weather 
prediction, field mission support, subseasonal-to-seasonal forecasting, and generation of multidecadal reanaly-
sis. The GEOS system is developed by NASA's Global Modeling and Assimilation Office. This study used the 
GEOS Forward Processing system (GEOS-FP, version 5.27.1) which generates analyses, assimilation products, 
and 10-day forecasts in near-real time. GEOS-FP is built around the GEOS AGCM, the GEOS atmospheric data 
assimilation system (hybrid–4DEnVar ADAS), and aerosol assimilation (Randles et al., 2017). Aerosols are an 
integral component of the model physics (Buchard et al., 2017) and are simulated with the Goddard Chemistry, 
Aerosol, Radiation, and Transport model (GOCART; Chin et al., 2002; Colarco et al., 2010). Fire emissions come 
from the Quick Fire Emissions Data set (QFED; Darmenov and da Silva, 2015) and leverage low-latency MODIS 
fire locations and FRP (Collection 6) data. Emissions from fires are distributed in the Planetary Boundary Layer 
(PBL). Anthropogenic emissions are from the Emissions Database for Global Atmospheric Research and Hemi-
spheric Transport of Air Pollution (HTAP) inventories. BVOC emissions are from the Model of Emissions of 
Gases and Aerosols from Nature (MEGAN). This study used GEOS global forecast of hourly AOD values and 
PM2.5 concentrations on a horizontal resolution of 0.25° × 0.3125° and initialized each day at 00:00 UTC.

2.2.6. ICAP-MME

Established in 2010, ICAP aims to promote community development of global aerosol observations, data assim-
ilation, and prediction technologies to support operational aerosol forecasting (Benedetti et al., 2011; Colarco 
et al., 2014; Reid et al., 2011). The ICAP-MME (Sessions et al., 2015; Xian et al., 2019) is a global multi-model 
aerosol forecasting ensemble consensus (currently, only AOD product is available) maintained by the Marine 
Meteorology Division of the Naval Research Laboratory (NRL), which provides a testbed of probabilistic 
aerosol forecasts. ICAP-MME is generated by combining nine global aerosol models: the European Center for 
Medium-range Weather Forecasts-Monitoring Atmospheric Composition and Climate model (ECMWF) under 
Copernicus Atmosphere Monitoring Service (CAMS, former MACC), GEOS, NAAPS, Japan Meteorological 
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Agency Model of Aerosol Species in the Global Atmosphere, NOAA Environmental Modeling System GFS 
Aerosol Component (NGAC), Mĕtĕo-France Modĕlĕ de Chimie Atmospherique ã Grande Echelle, and Finnish 
Meteorological Institute System for Integrated modeLing of Atmospheric coMposition, the Barcelona Super-
computing Center Chemical Transport Model, embedded in the Multiscale Online Nonhydrostatic AtmospheRe 
CHemistry and the UK Met Office models. These models have different underlying meteorological fields, emis-
sions, microphysics, and chemistry, and several include assimilation of satellite aerosol data, though using diverse 
processing methods and assimilation techniques. The horizontal and vertical resolutions of these models range 
from 0.25°  ×  0.31° and 72 vertical layers to 1.4°  ×  1° and 24 layers. As a result, ICAP-MME is driven by 
the  independent operation/quasi-operational meteorological data set, emission inputs, and plume rise algorithms 
generated by each of the member organizations. This study utilized ICAP-MME global 6-hr AOD at 550 nm on 
a horizontal resolution of 1° × 1° and initialized each day at 00:00 UTC.

2.2.7. NAAPS

NAAPS is developed at the Marine Meteorology Division of the NRL and provides an operational forecast of 3D 
atmospheric anthropogenic fine and biogenic fine aerosols, BB smoke, dust, and sea salt concentrations (Lynch 
et al., 2016). The current NAAPS is driven by global meteorological fields from the Navy Global Environmen-
tal Model, an operational global weather prediction system developed by the U.S. Navy (Hogan et al., 2014). 
NAAPS uses a BB smoke source from the Fire Locating and Modeling of Burning Emissions inventory, which is 
based on near-real time MODIS fire hotspot data (Reid et al., 2009). The wildfire smoke plumes are distributed 
uniformly through the bottom 4 layers. The NAAPS analysis is constrained by the assimilation of MODIS AOD 
(Hyer et al., 2011; J. Zhang et al., 2008). This study employed the NAAPS global 3-hourly AOD and surface 
PM2.5 concentrations at a horizontal resolution of 0.333° × 0.333° and initialized each day at 00:00 UTC.

2.3. Description of Observations

The performance of the ensemble in forecasting wildfire air pollution is verified with satellite AOD observations 
from the MODIS aboard Terra and Aqua and Visible Infrared Imaging Radiometer Suite onboard the Suomi 
National Polar-orbiting Partnership (SNPP) (VIIRS-SNPP) satellite and with ground PM2.5 ground observations 
from the EPA AirNow network.

2.3.1. AirNow PM2.5

Hourly PM2.5 observations were obtained from the U.S. EPA AirNow network (https://www.AirNow.gov). The 
AirNow data sets are acquired from a variety of monitoring data collected by AirNow and its partners, such as the 
EPA, NOAA, National Park Service, NASA, Centers for Disease Control, and tribal, state, and local air quality 
agencies, using a federal reference or equivalent monitoring methods approved by EPA. In this study, hourly 
PM2.5 concentrations, starting from 12:00 UTC of the current day to 11:00 UTC the next day, were derived from 
each AirNow site and averaged into a daily value for each site's location. This should be noted that the same time 
period was applied to calculate daily PM2.5 concentrations simulated by the individual models and ensemble.

2.3.2. MAIAC AOD

MAIAC algorithm is designed to work with the time series and spatial analyses of the MODIS L1B data, which 
are gridded to a fixed 1 km grid resolution to observe the same grid cell over time, resulting in an improvement 
in the accuracy of aerosol retrievals, atmospheric correction, and cloud detection (Lyapustin et al., 2012, 2018; 
Lyapustin, Martonchik, et al., 2011; Lyapustin, Wang, et al., 2011). MAIAC provides plume injection height in 
the same suite of MCD19A2 products (Lyapustin et al., 2020). In addition to standard MODIS calibration, in 
Collection 6 and beyond, MAIAC applies a residual de-trending of both MODIS Terra and Aqua sensors, along 
with polarization correction of MODIS Terra and cross-calibration of Terra to Aqua (Lyapustin et al., 2014). This 
allows MAIAC to process MODIS Terra and Aqua jointly as a single sensor. This study used mean daily global 
1 km MAIAC AOD at 550 nm averaged from all orbits available for the CONUS. MAIAC data were provided by 
NASA Goddard Space Flight Center. Note that while several of the input models are constrained by the assimila-
tion of MODIS data, none in this study use the MAIAC data, so it is at least partially independent from all models.

2.3.3. VIIRS-SNPP AOD

VIIRS-SNPP AOD product was acquired from the VIIRS instrument carried onboard the Suomi National 
Polar-orbiting Partnership (SNPP) (Cao et al., 2013, 2014; Uprety et al., 2013), which is a part of the JPSS. The 

https://www.AirNow.gov
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VIIRS instrument was initially developed based on the previous series of measurements on NOAA satellites and 
MODIS on Terra and Aqua satellites through the cooperation of NASA and NOAA (Levy et al., 2013, 2015). The 
instrument provides improved operational environmental monitoring and sensor data records for aerosol prod-
ucts through a short-wave infrared spanning from 0.412 to 2.25 microns to support NASA's EOS and NOAA's 
polar-orbiting operational environmental satellite system. VIIRS-SNPP observes the entire Earth's surface twice 
each day. It passes the equator at approximately 13:30 local time (LST). In this study, we used VIIRS-SNPP Level 
3 enhanced Dark Target over dark and bright surfaces AOD products at 550 nm (H. Zhang et al., 2016) with a 
fixed grid resolution at 0.1° as provided by NOAA. None of the models in this study used VIIRS AOD data in 
data assimilation during this study period.

2.4. Multi-Model Ensemble Forecast

We created the multi-model ensembles for AOD and PM2.5 during the 2020 Gigafire events (August to 
September 2020). For the AOD ensemble, we used the unweighted arithmetic mean value of AOD simulated 
by GMU-CMAQ, NACC-CMAQ, HYSPLIT, ICAP-MME, GEFS-Aerosols, GEOS, and NAAPS models. 
For the PM2.5 ensemble, we used the unweighted arithmetic mean value of PM2.5 concentrations simulated by 
GMU-CMAQ, NACC-CMAQ, HYSPLIT, GEFS-Aerosols, GEOS, and NAAPS models. Data from all models 
were interpolated to a unified horizontal grid of 12 × 12 km before calculating the ensemble mean. The ensem-
bles provide 24-hr forecasts of AOD and PM2.5 across the CONUS.

Note the ensemble forecasts calculate the mean of the member models, without applying weighting factors to 
these models. The use of unweighted arithmetic mean value may not bring out the full potential of the ensem-
ble forecasting system, as a weighted ensemble system may yield better performance than the unweighted 
ensemble system. We constructed two additional ensembles, one using a weighted ensemble method and 
the other with the ensemble median for AOD and PM2.5. Compared to the unweighted ensemble mean, the 
weighted ensemble shows mixed results in the model performance. While reducing biases, including mean 
bias (MB) and normalized mean bias (NMB), the weighted ensemble did not improve the model performance 
in terms of root mean square error (RMSE), correlation, or errors. In addition, the Gigafire event studied here 
is unprecedented in many ways, including the burned areas, emission amounts, fire intensity, and burning 
duration. Because of the exceptionalness of this event, there is no historic training data available to derive 
weighting factors, which makes it difficult to derive the weighting factors needed for the weighted ensemble 
method.

2.5. Ensemble Probability of PM2.5 Exceedance Forecast

The GMU-CMAQ, NACC-CMAQ, HYSPLIT, GEFS-Aerosols, GEOS, and NAAPS were used to create the 
ensemble probability of the PM2.5 exceedance forecast. The probability was calculated using Equation 1 based on 
the number of models that forecast PM2.5 exceedances (daily average concentrations larger than 35 μg/m 3) during 
the Gigafire events. The probability result ranges from 0% (none of the models forecasting the exceedances; 
exceedances are very unlikely to occur) to 100% (all models forecasting the exceedances; exceedances are very 
likely to occur):

𝑃𝑃 (𝐴𝐴) =
Number of models that forecast the exceedances

Total number of models
× 100% (1)

where P(A) is the probability of event A.

2.6. Model Evaluation

The AOD and surface PM2.5 concentrations simulated by the ensemble mean and individual models are evalu-
ated with satellite and ground measurements, respectively. The performance of AOD prediction by individual 
models and ensemble mean was evaluated against VIIRS and MAIAC AOD. For PM2.5, the performance of 
PM2.5 forecasts was verified by comparing model simulations against daily average PM2.5 observations from the 
EPA AirNow ground network. In both cases, the simulations by individual models and the ensemble mean were 
compared with observations at the nearest satellite retrieval or monitoring site. Any grids containing missing 
model data and/or unqualified observations data were excluded from the calculation.
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A suite of statistical metrics, including RMSE, correlation (CORR), absolute fractional bias (FB), MB, and mean 
error (ME) were calculated using Equations 2–6:

RMSE =

√

√

√

√
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MB =
1

𝑁𝑁

𝑁𝑁
∑

𝑖𝑖=0

(𝑀𝑀𝑖𝑖 − 𝑂𝑂𝑖𝑖) (5)

ME =
1

𝑁𝑁

𝑁𝑁
∑

𝑖𝑖=0

|𝑀𝑀𝑖𝑖 − 𝑂𝑂𝑖𝑖| (6)

where Mi represents the ith model forecast, Oi is the ith observation, and N is the total number of observations and 
time-space matched prediction during the study periods.

The statistical metrics listed above are limited in their ability to evaluate model performance to meet certain 
thresholds, such as the exceedance of the NAAQS for PM2.5. In addition, exceedance forecasts are typically 
generated for an area, such as a metropolitan or zip code. When an exceedance is predicted to occur at any grid 
within this area, an early warning will be issued for the whole area. Therefore, we employed two categorical 
metrics: the area hit rate (aH) and the area false alarm ratio (aFAR) following Kang et al. (2007). These two 
metrics will supplementarily measure the forecasting performance of individual models, the ensemble mean, 
and the ensemble probability in predicting daily PM2.5 exceedances (24-hr average PM2.5 concentrations greater 
than 35 μg/m 3 based on NAAQS) to reflect the spatial uncertainties of the model forecast. These two metrics 
were calculated based on paired observed and predicted PM2.5 exceedances by considering four possible scenar-
ios: (a) a forecasted exceedance that is not observed (false alarm); (b) a forecasted exceedance that is observed 
(hit); (c) no exceedance is forecasted or observed; (d) an observed exceedance that is not forecasted. The aH 
and aFAR values are determined by matching observed and forecasted exceedances within a designated area 
surrounding the observation locations. In the present study, we used an area of 0.5° × 0.5° centered at each 
AirNow site's location. The area hit rate aH (Equation 7) refers to the percentage of hits if a forecasted exceed-
ance is observed within the designated area (A). The aFAR (Equation 8) refers to the percentage of false alarms 
if a forecasted exceedance is not observed within the designated area. The aH and aFAR both range from 0% 
to 100%:

𝑎𝑎𝑎𝑎 =

(

𝐴𝐴𝐴𝐴

𝐴𝐴𝐴𝐴 + 𝐴𝐴𝐴𝐴

)

× 100% (7)

𝑎𝑎FAR =

(

𝐴𝐴𝑎𝑎

𝐴𝐴𝑎𝑎 + 𝐴𝐴𝐴𝐴

)

× 100% (8)

where Aa is the number of forecasted exceedances that are not observed within a designated area (false posi-
tives), Ab is the number of forecasted exceedances that are observed within a designated area (hits), and Ad is the 
number of observed exceedances that were not forecasted within a designated area (misses). The aH is based on 
total observed exceedances while the aFAR is based on total forecasted exceedances. If a model performs well, 
the misses (Ad) will be low and the hits (Ab) will be high, resulting in high aH. In contrast, if a model performs 
poorly, the false positives (Aa) will be high and the hits (Ab) will be low, resulting in high aFAR.
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The overall rating (RANK) was used to determine the comprehensive forecasting performances of individual 
models and ensemble mean during the study period (Draxler, 2006; Y. Li et al., 2020). In the case of PM2.5 evalu-
ation, the RANK was derived from the sum of the normalized CORR, FB, aH, and aFAR (Equation 9). In the case 
of AOD evaluation, the RANK was calculated using the sum of the normalized CORR and FB (Equation 10). 
PM2.5 RANK ranges from 0 to 4 (from worst to best), while AOD RANK ranges from 0 to 2:

RANKPM2.5
=

CORR + 1

2
+

(

1 −
FB

2

)

+
𝑎𝑎𝑎𝑎

100%
+

(

1 −
𝑎𝑎FAR

100%

)

 (9)

RANKAOD =
CORR + 1

2
+

(

1 −
FB

2

)

 (10)

3. Results and Discussions
In this section, the MME mean was evaluated with ground and satellite observations during the 2020 Western 
U.S. Gigafire events (August–September 2020). The forecasting performance of the ensemble mean was also 
compared with individual models to assess whether the ensemble mean can outperform the top performers among 
these members. The evaluation results are based on the average of daily statistical metrics and overall rating 
(RANK) that were calculated from every grid with complete model simulation and observation data sets over the 
study period (August–September 2020), as shown in Table 1. High values of CORR, aH, and RANK, and low 
values of RMSE, MB, ME, aFAR, and FB indicate good agreement between model forecasts and observations. 

Cases Models RMSE CORR MB ME FB %aH %aFAR RANK

AOD simulations compared 
against VIIRS retrievals

Model-1 0.31 0.57 −0.10 0.17 0.66 1.45

Model-2 0.34 0.49 −0.17 0.20 0.85 1.32

Model-3 0.39 0.33 −0.16 0.24 1.37 0.98

Model-4 0.32 0.48 −0.12 0.18 0.72 1.38

Model-5 0.51 0.46 0.10 0.28 0.79 1.33

Model-6 0.34 0.52 −0.17 0.20 0.93 1.29

Model-7 0.31 0.53 −0.08 0.17 0.61 1.46

Ensemble Mean 0.28 0.62 −0.10 0.16 0.65 1.48

AOD simulations compared 
against MAIAC  
retrievals

Model-1 0.25 0.62 −0.07 0.14 0.62 1.50

Model-2 0.29 0.53 −0.14 0.16 0.77 1.38

Model-3 0.34 0.40 −0.12 0.21 1.24 1.08

Model-4 0.27 0.53 −0.08 0.15 0.65 1.44

Model-5 0.49 0.49 0.14 0.28 0.80 1.35

Model-6 0.28 0.55 −0.12 0.16 0.82 1.36

Model-7 0.25 0.59 −0.05 0.13 0.53 1.53

Ensemble Mean 0.22 0.67 −0.06 0.12 0.56 1.55

PM2.5 simulations compared 
against AirNow 
observations

Model-1 25.61 0.54 3.37 9.97 0.55 69.08 44.29 2.81

Model-2 16.96 0.49 −4.89 8.02 0.59 39.67 23.73 2.74

Model-3 20.57 0.43 −4.65 10.65 1.32 71.71 45.42 2.40

Model-4 51.96 0.49 19.80 23.00 0.89 79.16 75.57 2.38

Model-5 51.94 0.44 13.02 18.42 0.77 81.00 68.68 2.50

Model-7 39.98 0.51 12.30 15.91 0.70 80.79 62.51 2.63

Ensemble Mean 25.93 0.60 7.40 11.16 0.54 86.85 60.52 2.83

Note. The best results of each statistical metric and RANK are highlighted in red and the poorest results are highlighted in blue.

Table 1 
Overall Ensemble Mean and Individual Model Performances in Forecasting AOD Values and Surface PM2.5 Concentrations During the 2020 Gigafire Events 
(August–September 2020) Based on Seven Statistical Metrics: RMSE, CORR, MB, ME, FB, aH and aFAR, and Overall Rating (RANK)
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In Sections 3.1, 3.2, and 3.4, we decided to show the forecasts and observations on 22 August 2020, as the case 
study due to better data completeness of both model simulation and observation data compared to other days 
within the study period.

3.1. Performance of Ensemble AOD Forecasting

First, we will evaluate the AOD simulations against VIIRS and MAIAC AOD retrievals. Overall, the ensemble 
forecasts of AOD are promising, where major plume characteristics are well captured across the northwestern 
U.S. but not so over the central U.S. For instance, contour maps of AOD forecasts, VIIRS AOD, and MAIAC 
AOD retrievals on 22 August 2020, in Figures 2a–2g and 3a–3g, indicate that the AOD simulations from all 
the models, Model-1 to 7, underestimated AOD values over the western U.S., while Model-5 overestimated 
AOD primarily in California (Figures 2c, 2e, 3c, and 3e). In comparison, the ensemble mean slightly overesti-
mated AOD over Northern California and underestimated it over Montana, Wyoming, Colorado, Nebraska, and 
Kansas, where complex geographic formations, such as the Colorado Plateau-Central Rockies areas, are located 
(Figures 2h and 3h). However, the majority of areas showing high AOD in the ensemble forecast match fairly well 
with the satellite observations.

Figures 5 and 6 show the time series of five statistical metrics for AOD evaluation during August-September 
2020 against the VIIRS and MODIS MAIAC, respectively. By all of these metrics, the ensemble mean shows 
better performance compared to individual models. Compared to individual models (dashed lines), the ensem-
ble mean (solid black line) shows a consistently higher correlation (CORR), especially in the mid-August and 
mid-September when the wildfires were most active (Figures 5 and 6a), and comparatively low values of root 
mean square error (RMSE; Figures 5 and 6b), mean bias (MB; Figures 5 and 6c), mean error (ME; Figures 5 
and 6d), and fractional bias (FB; Figures 5 and 6e). The ensemble mean and most individual models slightly 
underestimated AOD almost the entire period, especially during the peak fire season (in the middle of September 
2020), leading to relatively high negative MB values during this time (Figures 5 and 6b). Similar to previous 
results, Model-5 overestimated the AOD with relatively high positive MB values during the same period. The 
errors in model simulations of AOD throughout the extreme fire period were also demonstrated by highly varying 
values of RMSE, ME, and FB in mid-August and mid-September, as shown in Figures 5, 6b, 6d, and 6e.

Compared with VIIRS AOD (Table 1), the ensemble mean increased correlation and greatly reduced bias and 
error, as indicated by the highest CORR (0.62), the lowest RMSE (0.28) and ME (0.16), and the second lowest 
in MB (−0.10 μg/m 3) and FB (0.65), leading to ranking the first place in overall rating (RANK; 1.48). Similar to 
the comparison with MAIAC AOD, the ensemble mean significantly increased correlation and reduced bias and 
error suggested by the highest CORR (0.67), the lowest RMSE (0.22), and ME (0.12), and the second lowest in 
MB (−0.06 μg/m 3) and FB (0.56), resulting in ranking the first place in overall rating (RANK; 1.55). These bias 
and error values are closer to zero relative to most individual models, meaning that the ensemble mean signifi-
cantly reduces bias and uncertainties in AOD forecasting.

All the results suggest that the ensemble forecast is capable of reducing the bias in AOD prediction, especially 
during extreme wildfire events. Furthermore, the ensemble mean successfully produces more statistically consist-
ent and reliable forecasts of AOD during the wildfires relative to the forecasts provided by individual models.

3.2. Ensemble Forecast Performance for Surface PM2.5 Concentration

Next, we will evaluate the PM2.5 simulations against AirNow ground observations. The results show that the 
MME mean performs fairly well in forecasting surface PM2.5 during extreme wildfires, such as on 22 August 
2020 (Figure 4). Figures 4a, 4c, 4d, 4e, and 4f show that Model-1, 3, 4, 5, and 7 overestimated PM2.5 concen-
trations considerably in the western U.S. and to a less extent in the Central and Southern U.S. In contrast, the 
ensemble mean overestimated PM2.5 simulations in Northern California (Figure 4g). However, the extremely high 
PM2.5 concentrations simulated by the ensemble mean are located over the areas that are in fairly good agreement 
with the AirNow ground observations (Figure 4h).

Figure 7 shows the time series of statistical metrics of surface PM2.5 evaluation from August to September 2020. 
The ensemble mean shows better performance compared to individual models when compared to surface PM2.5 
observations from the AirNow network. In Figure 7b, the ensemble mean (solid black line) shows consistently 
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Figure 2. (a–g) Aerosol optical depth (AOD) predicted by seven individual models and (h) the ensemble mean, compared 
with (i) VIIRS AOD retrievals on 22 August 2020 (during the 2020 Gigafire events). Gaps in the figures are satellite 
observations that did not pass quality control, under cloud cover, or missing model simulations, which were not used in the 
calculation.
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Figure 3. (a–g) Aerosol optical depth (AOD) predicted by seven individual models and (h) the ensemble mean, compared 
with (i) MAIAC AOD retrievals on 22 August 2020 (during the 2020 Gigafire events). Gaps in the figures are satellite 
observations that did not pass quality control and missing model simulations, which were not used in the calculation.
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Figure 4. (a–f) Surface PM2.5 concentrations predicted by six individual models and (g) the multi-model ensemble mean, compared with (h) AirNow PM2.5 
observations on 22 August 2020 (during the 2020 Gigafire events).
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higher correlation (CORR) during the intense wildfire period (mid-August and mid-September), and relatively 
lower root mean square error (RMSE; Figure 7b), mean bias (MB; Figure 7c), mean error (ME; Figure 7d), and 
fractional bias (FB; Figure 7g) for the entire period than most individual models (dashed lines). The positive MB 
values of the ensemble mean and the individual models in Figure 7c indicate the overestimation of PM2.5 simula-
tions for most of the time during the wildfire period, except for Model-2 and Model-3, which show negative MB 
values (underestimation of PM2.5 concentrations). The errors in the simulations of PM2.5 during the intense wild-
fire period were indicated by highly varying values of RMSE, ME, and FB in mid-August and mid-September, 
as shown in Figures 7b, 7d, and 7g.

Table 1 compares the eight statistical metrics calculated for surface PM2.5 concentration by the individual models 
and the ensemble mean. Of the eight metrics, the ensemble mean scores the highest for four, including the two 
most important ones, the hit rate, and the overall rank. There is one member, Model-2, performing the best in 
terms of three of these metrics (RMSE, ME, and FAR). However, Model-2 has the lowest hit rate (accurate predic-
tion of unhealthy air quality events), which makes its prediction the least useful for air quality warning during 
wildfire smoke events. Compared to individual models, the ensemble mean increased correlation and reduced 
bias and error in PM2.5 forecasts, with the highest CORR (0.60) and scoring the best in FB (0.54), and lowering 
MB (7.40 μg/m 3), RMSE (25.93) and ME (11.16). Its overall rank is higher than any of these member models.

We further analyzed the performance of the MME to predict daily PM2.5 exceedances (daily concentration 
>35 μg/m 3). As shown in Figures 7e and 7f, the ensemble mean (black plus signs) reduced aFAR (percentage 

Figure 5. Time series of (a) root mean square error, (b) CORR, (c) mean bias (MB), (d) mean error (ME), and (e) fractional bias (FB) of aerosol optical depth (AOD) 
during the 2020 Gigafire events from August to September 2020. The AOD simulations by the ensemble mean (solid black line) and individual models (dash lines): 
Model-1 (blue), Model-2 (light blue), Model-3 (pink), Model-4 (green), Model-5 (purple), Model-6 (orange), and Model-7 (yellow) were compared against VIIRS AOD 
retrievals (Note: Model-3 shows a 6-week gap since its server had been down for 6 weeks).
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of false alarms) and substantially increased the area hit rate (aH, percentage of hits), particularly in mid-August 
and mid-September when the extremely intense wildfires occurred, compared to individual models (colored 
plus signs). The ensemble mean achieves the highest aH value, predicting more than 86% of the observed PM2.5 
exceedances during extreme wildfires, and lowered aFAR to 60.52%. Due to relatively high correlation, high aH, 
low aFAR, and low FB values, the ensemble mean performs highly in RANK (2.83). These results suggest that 
the ensemble forecast has a practical advantage in reducing bias from individual forecasts of PM2.5 and allowing 
effective probabilistic forecasts of PM2.5. Furthermore, the evaluation results revealed that although a single 
model can be excellent at predicting AOD, it is not necessarily translated into good performance in surface PM2.5 
prediction. The model that performs highly in RANK for the AOD prediction is different from that of the PM2.5 
prediction.

3.3. Discussion of Ensemble Forecast Performance

Compared to individual models, the ensemble mean shows persistently higher RANK values for AOD and PM2.5 
throughout the study period (August–September 2020) when evaluated against three observation data sets: VIIRS 
(Figure 8a), MAIAC AOD (Figure 8b), and AirNow surface PM2.5 concentrations (Figure 8c). The results suggest 
that the ensemble forecast is more reliable and performs better than individual model forecasts. In addition, it can 
reduce the bias (Table 1) because the ensemble mean cancels off positive and negative biases among individual 
model simulations. Note if most of the models underestimate (negative bias) or overestimate (positive bias) 

Figure 6. Time series of (a) root mean square error, (b) CORR, (c) mean bias (MB), (d) mean error (ME), and (e) fractional bias (FB) of aerosol optical depth (AOD) 
during the 2020 Gigafire events from August to September 2020. The AOD simulations by the ensemble mean (solid black line) and individual models (dash lines): 
Model-1 (blue), Model-2 (light blue), Model-3 (pink), Model-4 (green), Model-5 (purple), Model-6 (orange), and Model-7 (yellow) were compared against MAIAC 
AOD retrievals (Note: Model-3 shows a 6-week gap since its server had been down for 6 weeks).
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AOD and PM2.5, the bias of the ensemble mean can become may worse than the top-ranked model. Therefore, 
the ensemble forecast is capable of improving forecasting only if there are complementary underestimations and 
overestimations by individual models.

For models that use satellite-based fire emission data sets, forest fire emissions are derived based on the latest 
satellite observations, which are assumed to continue during the forecasting period (24–120 hr, depending on the 
model). For real-time forecasting applications, the timeliness of the fire data is a key factor in determining the 
accuracy of wildfire air quality prediction (Hyer et al., 2023). Moreover, the intense wildfires during the middle 
of September 2020 generated very thick smoke that compromised the capability of satellite sensors to detect key 

Figure 7. Time series of (a) root mean square error, (b) CORR, (c) mean bias (MB), (d) mean error (ME), (e) aH, (f) area false alarm ratio (aFAR), and (g) fractional 
bias (FB) of surface PM2.5 concentration during the 2020 Gigafire events from August to September 2020. The PM2.5 simulations by the ensemble mean (black solid 
line) and individual Model-1 (blue), Model-2 (light blue), Model-3 (pink), Model-4 (green), Model-5 (purple), and Model-7 (yellow) were compared against AirNow 
PM2.5 observations (Note: Model-3 shows a 6-week gap since its server had been down for 6 weeks).
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fire features such as fire hotspots, FRP, and AOD. These parameters are critical to either estimating fire emissions 
or evaluating model performance. The smoke could make the BB emissions applied to each model inaccurate 
and create a large error in smoke inventories (Kaiser et al., 2012). Furthermore, as the fires become stronger, the 
emissions are injected at a higher altitude, which often misrepresents vertical emissions within the PBL generated 
by each individual model (Ye et al., 2021). These two factors are important sources of uncertainties in air quality 
forecasts during wildfire events (Carter et al., 2020; X. Pan et al., 2020; Ye et al., 2021). Vernon et al. (2018) 
proposed that the plume injection height can affect smoke dispersion due to varying wind speeds and directions at 
different altitudes. Y. Li et al. (2020) found that a higher injection height can reduce near-source concentrations, 
and increase concentrations downwind. In addition, diurnal and day-to-day variations of wildfire behavior due to 
fuel aridity and availability, fire weather, fire containment activities and combustion stage can limit model fore-
casting performance during large wildfires (Saide et al., 2015). Besides, a variety of input data sets, such as mete-
orological fields and chemical transports (Garcia-Menendez et al., 2013; F. Li et al., 2019; Y. Li et al., 2020) and 
plume rise schemes (Briggs, 1969; Freitas et al., 2007; Y. Li et al., 2023; Paugam et al., 2016; Sofiev et al., 2012; 
Stein et al., 2009; Vernon et al., 2018; Zhu et al., 2018), are implemented differently in each model and can also 
impact the AOD and PM2.5 forecasting performance (Delle Monache & Stull, 2003; Kumar et al., 2020).

Note the ensemble forecast calculates the mean of individual forecasts without applying any weighting factors. 
We also constructed a weighted ensemble. The weights for each individual model were determined by minimiz-
ing the differences between observations and model simulations using the multilinear regression method. When 
compared to the unweighted ensemble mean, the weighted ensemble exhibited mixed performance results (see 

Figure 8. Time series of the overall rating (RANK) for aerosol optical depth (AOD) and PM2.5 simulated by the ensemble 
mean and individual models. The RANK is calculated with four statistical metrics by comparing model predictions against 
AOD retrievals from (a) VIIRS and (b) MAIAC, and (c) surface PM2.5 observations from AirNow during the 2020 Gigafire 
events from August to September 2020 (Note: Model-3 shows a 6-week gap since its server had been down for 6 weeks).
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Table S2 in Supporting Information S1). While it effectively reduced biases, including RMSE, MB, and NMB, it 
did not improve performance for predicting extreme events, for example, the accuracy to predicting exceedances 
of the NAAQS for PM2.5. Notably, the area hit ratio of the weighted ensemble was 20% lower than that of the 
unweighted ensemble. This discrepancy may arise from the fact that the weights calculated for the entire CONUS 
domain might not be suitable for specific regions. In addition, the Gigafire event studied here is unprecedented 
in many ways, including the burned areas, emission amounts, fire intensity, and burning duration. Because of 
the exceptionalness of this event, there is no historical training data available to derive better weighting factors, 
which further prevents us from switching to the weighted method. Future studies should explore the potential of 
region-specific weighting factors, as well as different methods to establish stable weights that can be reliably used 
for real-time forecasting.

3.4. Ensemble Probability Forecast of PM2.5 Exceedances

In general, the ensemble probability (Equation 1) shows fairly good performance in forecasting PM2.5 exceed-
ances during the 2020 Gigafire events. Figure 9 depicts a contour map of ensemble probability forecast values 
overlaid by the actual exceedance (binary) over the AirNow sites across the CONUS. The exceedance probability 
ranges from 0% (no exceedances predicted by any models) to 100% (exceedances predicted by all six models). 
The larger the number of models that forecast the exceedance for each grid, the higher probability that the exceed-
ances will occur in that grid. As shown in Figure 9, the contours of high ensemble probability values of 83.33% 
(exceedances are likely to occur; orange) and 100% (exceedances are very likely to occur; red) were displayed 
mainly in California, which collocated well with the AirNow exceedance measurements (marked as filled gray 
circles). However, the AirNow observed exceedances in the downwind region (Idaho and Montana) were only 
captured by four of the six models, giving a probability forecast of 66.67% (exceedances probably occur; yellow). 
The degradation of exceedance probability in the downwind areas highlights the challenges in predicting trans-
ported smoke plumes and their effects on surface air quality.

We also evaluated the performance of forecasting PM2.5 exceedances during extreme fire events by comparing 
the predicted ensemble exceedance probability against the AirNow observed PM2.5 exceedances. The results are 

Figure 9. Ensemble probability forecast of PM2.5 exceedances on 22 August 2020 (during the 2020 Gigafire events). 
Foreground colors indicate the probability values ranging from 16.67% (one out of six models forecasts the PM2.5 exceedance 
or the exceedances are very unlikely to occur) (light blue) to 100% (all six models forecast the PM2.5 exceedances or the 
exceedances are very likely to occur) (red). The PM2.5 exceedances observed by the AirNow sites are displayed in gray/white 
circles (gray means an exceedance recorded by the monitor, and white means no exceedance recorded).
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shown as time series plots of aH and aFAR in Figures 10a and 10b. The average aH (percentage of hits) and 
aFAR (percentage of false alarms) values are listed in Table 2. High aH and low aFAR suggest good agreement 
between model simulated exceedances and observed exceedances. As displayed in the time series plots of aH and 
aFAR (Figures 10a and 10b) and the average aH and aFAR values (Table 2), the lowest ensemble probability 
of 16.67% (exceedances are very unlikely to occur; blue plus sign) is constantly associated with high aH and 
high aFAR throughout the study period, resulting in being top-ranked aH (93.99%) and the lowest-ranked aFAR 
(78.00%) on average, while the highest ensemble probability of 100% (exceedances are very likely to occur) show 

persistently and relatively low aH and low aFAR all the time, resulting in 
holding the lowest-ranked aH (14.73%) and the top-ranked aFAR (1.54%).

The evaluation results imply that the low ensemble probability shows better 
performance in forecasting observed exceedances across the CONUS. This 
is because some exceedances predicted by a small subset of models were 
true exceedances associated with wildfires, especially in the wildfire active 
regions, resulting in high aH (percentage of hits). However, the remaining 
exceedances predicted elsewhere were false alarms influenced by overesti-
mation that could not be removed from the forecast due to a lack of cali-
bration and validation with other models. As a result, the lowest probability 
values generally yield high aFAR (percentage of false alarms). Conversely, 
the ensemble forecast with a larger number of models or the higher ensem-
ble probability performs more accurately and reliably in forecasting PM2.5 
exceedances on a smaller or local scale because their predicted exceedances 
have been calibrated and verified with the co-existed exceedances predicted 
by the other participating models included in the ensemble. As a conse-
quence, the areas showing false exceedances have been reduced or removed, 
resulting in lower aH and aFAR.

Practically, the accuracy of the exceedance probability forecasts depends 
on the original grid resolution of each ensemble member. The exceedances 

Figure 10. Time series plots of (a) aH (percentage of hits) and (b) area false alarm ratio (aFAR) (Percentage of false alarms) 
during the 2020 Gigafire events (August–September 2020) for the ensemble probability forecast of PM2.5 exceedances. 
Ensemble probability values range from 16.67% (one out of six models or the exceedances are very unlikely to occur) to 
100% (all six models or the exceedances are very likely to occur).

Ensemble probability

Statistical metric

aH (%) aFAR (%)

16.67% (1 of 6 models) 93.99 78.00

33.33% (2 of 6 models) 88.40 63.33

50% (3 of 6 models) 79.31 47.51

66.67% (4 of 6 models) 69.72 28.99

83.33% (5 of 6 models) 48.10 15.38

100% (all models) 14.73 1.54

Note. The probability value is based on the number of ensemble members that 
predict the exceedances (Note that the total number of ensemble members is 
six).

Table 2 
Averaged aH (Hit Rate) and aFAR (False Alarm Rate) of Ensemble 
Probability Forecast of PM2.5 Exceedances Forecast During the 2020 
Gigafire Events (August–September 2020) Calculated From Comparing 
Simulated PM2.5 Exceedances and Observed PM2.5 Exceedances Obtained 
From AirNow
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simulated by the global models generally cover larger areas compared to that by the regional models, even after 
being interpolated to a higher spatial resolution. Using the MME approach can satisfactorily reduce the biases in 
the exceedance probability forecast, which are frequently a result of the discrepancies between the spatial reso-
lutions of the ensemble members. Furthermore, the statistics results also highlight that the ensemble exceedance 
probability forecast has the potential to provide complementarily estimated high-risk areas (the areas within the 
ensemble exceedance probability of 100%) associated with PM2.5 exceedances during the wildfires in addition to 
the ground observations, especially in the location where the monitoring sites are sparse or nonexistent.

4. Conclusions
Wildfires are important natural emission sources that contribute large amounts of aerosols to the atmosphere that 
exerts detrimental impacts on society, such as adverse health effects, life and property losses, and disruption of 
economic activities. In this study, we developed and evaluated a North America ensemble wildfire smoke fore-
casting system to improve the predictability of wildfire AOD and PM2.5. The MME forecasts were built using 
three regional models, one global ensemble model, and three global models operated by NASA, NOAA, NRL, 
and GMU. Our ensemble forecast reproduces daily forecasts of AOD and PM2.5 as well as the probability of 
PM2.5 exceedances (daily concentration >35 μg/m 3) on a 12 × 12 km grid resolution over the Contiguous U.S. 
(CONUS) during the 2020 Gigafire events (August–September 2020) in the western U.S.

The performance of the ensemble forecast for AOD and PM2.5 was evaluated with AOD retrievals from the 
VIIRS and MODIS-MAIAC and PM2.5 measurements from the AirNow network. A suite of statistical metrics, 
including five single metrics (RMSE, CORR, MB, ME, and FB), an overall rating (RANK), and two discrete 
categorical metrics (area hit rate; aH and aFAR) were employed to measure the performance of ensemble 
mean and ensemble probability in predicting the exceedances of the NAAQS for PM2.5 during the 2020 
Gigafire events. The results suggested that the ensemble mean, compared to the individual forecasts, can 
significantly reduce the biases and uncertainties in the wildfire air pollution forecast and produce more reli-
able forecasts during the study period. For AOD forecasts, the ensemble mean was able to improve model 
performance, as indicated by reduced bias and error, and the strongest correlation. The ensemble mean also 
achieved the best overall RANK when compared against VIIRS (1.48 from a range of 0.98–1.46 by individual 
forecasts) and MAIAC AOD (1.55 from a range of 1.08–1.53 by individual forecasts). For surface PM2.5, 
the ensemble mean outperformed all individual models, with the strongest correlation (0.60 vs. 0.43–0.54 
by individual forecasts), the lowest FB (0.54 vs. 0.55–1.32), the highest area hit rate (87% vs. 40%–82%), 
decreased MB (7.40 μg/m 3) and the best overall RANK (2.83 from a range of 2.40–2.81). In terms of the 
exceedance probability forecasting (binary prediction) performance, the ensemble practically generated a 
well suited exceedance probability forecast that matched the observed AirNow exceedances fairly well, as 
demonstrated by the lowest false alarm rate (aFAR) at 1.52% achieved by the ensemble probability of 100%. 
This result suggested a great potential of the ensemble exceedance probability forecast to provide air pollution 
early warning alerts when the PM2.5 concentrations exceed the health-based NAAQS (daily concentration 
>35 μg/m 3) during wildfire events.

The results of this paper demonstrate that even with the relatively straightforward MME mean method, which 
has been widely used in the regional and global ensemble of atmospheric composition predictions (e.g., Sessions 
et  al.,  2015; Xian et  al.,  2019), the ensemble approach can yield better prediction during the unprecedented 
Gigafire events. Such a finding is practically useful, without demanding too many extra resources, for the federal 
agencies to provide better early warning services to the public.

Note that the MME wildfire air quality forecast system presented here is still at an early stage for real-time deploy-
ment over North America. It is necessary to extend the ensemble forecast to other fires and periods, including 
the 2021 fire season and more recent Canadian wildfire events, to examine if this method can be applied in other 
cases. The intercomparison between the ensemble and individual models can be useful to investigate differences 
in emissions, meteorology inputs, and plume rise algorithms, as well as chemical transport/dispersion model 
processes among these models. In addition, we will explore various methods to develop the ensemble forecasts, 
such as exploring weighted ensemble and comparing weighted and unweighted ensemble means. Collectively, 
these research efforts will lead to improved real-time wildfire smoke forecasts which will be over North America 
to support key decision-making on air quality and public health at local, national, and international levels.
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Data Availability Statement
The data for VIIRS, GEOS5, HYSPLIT, NAAPS, NACC-CMAQ, and GMU-CMAQ can be downloaded from 
https://zenodo.org/records/10126149.

The AirNow observations can be downloaded from: https://files.airnowtech.org/?prefix=airnow/2020/.

The GEFS-Aerosols results can be downloaded from: https://noaa-gefs-pds.s3.amazonaws.com/index.html.

The ICAP-MME results can be downloaded from: https://nrlgodae1.nrlmry.navy.mil/ftp/outgoing/nrl/
ICAP-MME/.
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